As servers get busier, jerky video and dropped connections are pretty common. Here is rural America, it's expected. But the answer may not be as hard as we think.
It could be math.
The practical benefits of the technology, known as coded TCP, were seen on a recent test run on a New York-to-Boston Acela train, notorious for poor connectivity. By increasing their available bandwidth—the amount of data that can be relayed in a given period of time—Medard and students were able to watch blip-free YouTube videos while some other passengers struggled to get online. "They were asking us 'How did you do that?' and we said 'We're engineers!' " she jokes.How exciting is this? The extra bandwidth should arrive just in time for our cranial Internet implants.
More rigorous lab studies have shown large benefits. Testing the system on Wi-Fi networks at MIT, where 2 percent of packets are typically lost, Medard's group found that a normal bandwidth of one megabit per second was boosted to 16 megabits per second. In a circumstance where losses were 5 percent—common on a fast-moving train—the method boosted bandwidth from 0.5 megabits per second to 13.5 megabits per second. In a situation with zero losses, there was little if any benefit, but loss-free wireless scenarios are rare.
Medard's work "is an important breakthrough that promises to significantly improve bandwidth and quality-of-experience for cellular data users experiencing poor signal coverage," says Dipankar "Ray" Raychaudhuri, director or the Winlab at Rutgers University (see "Pervasive Wireless"). He expects the technology to be widely deployed within two to three years. (More)
Resistance is futile.
No comments:
Post a Comment